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Algae Models

Citric acid cycle, oxidative phosphorylation, DNA, RNA,
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squareq error between thg oo 2oests
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data Figure : Simplified central carbon metabolic network of a
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Bayesian Optimisation

Legged Pharmaceutical ‘:\ CO2 Capture Integrated
Locomotion Processes * Technologies ,@g gasification
(Calandra et al. (F.Boukouvala (M. M.Faruque [ S combined cycle
(AMAI, 2015) 2010) 2012) HEETRSAT (Y. Lang 2011)

U Bayesian Optimisation is a dafficientasymptotically complete globlalack box
optimisationtechnique. That uses all available data, prior and the evidence to
calculate the posterior distribution.

U Also known as Kriging
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BayesiatOptimization Algorithm

1. Choose several initial points x and evali@te or "ah )8The points can be randomly generated
or used from data samples collected prior.

2. While the stopping criterion is not met:

2a. Calculatehe posterior from the Géh "Qfrom the points observed.

2b. Usean acquisition function tdecide where to evaluate next.
3. Based on the most recent posterior distribution, decide on the point with the best estimated value or
best observed value

The stopping criteria can be arbitrary(@gmber of iterations or till certain value is reached.)

(E.Brochu2010)
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Gaussian Process

U GaussiafProcessesonstructa
probabilistic model of the function in a
form of:

0"Qox : Vva (6)hTo ) ,

U AGPis specified by a mean function, @
and a covariance functiok,(kernel).

sterior

U The kernels of a GP incorporate
smoothness assumptions made of the data
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